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We first recall the concepts of spectral eddy viscosity and diffusivity, derived from 
the two-point closures of turbulence, in the framework of large-eddy simulations in 
Fourier space. The case of a spectrum which does not decrease as k-x at the cutoff is 
studied. Then, a spectral large-eddy simulation of decaying isotropic turbulence 
convecting a passive temperature is performed, at  a resolution of 1283 collocation 
points. It is shown that the temperature spectrum tends to follow in the energetic 
scales a k-l range, followed by a k-e inertial-convective range at higher wavenumbers. 
This is in agreement with previous independent calculations (Lesieur & Rogallo 
1989). When self-similar spectra have developed, the temperature variance and 
kinetic energy decay respectively like t-1-37 and PS5, with identical initial spectra 
peaking a t  k, = 20 and cc ka for k + 0. In the k-’ range, the temperature spectrum is 
found to collapse according to the law E,(k,  t) = 0.17 ( ( u 2 ) / e )  k-’, where 8 and 7 are 
the kinetic energy and temperature variance dissipation rates. The spectral eddy 
viscosity and diffusivity are recalculated explicitly from the large-eddy simulation : 
the anomalous cc Ink behaviour of the eddy diffusivity in the eddy-viscosity plateau 
is shown to be associated with the large-scale intermittency of the passive 
temperature : the p.d.f. of the velocity component u is Gaussian ( -  exp -X2), while 
the scalar T, the velocity derivatives au/ax and au/&, and the temperature 
derivative aT/az are all close to exponential exp -PI at high PI. The pressure 
distribution is exponential at  low pressure and Gaussian at high. 

For stably stratified Boussinesq turbulence, the coupling between the temperature 
and the velocity fields leads to the disappearance of the ‘anomalous’ temperature 
behaviour (k-’ range, logarithmic eddy diffusivity and exponential probability 
density function for T). These are the highest-resolution calculations ever performed 
for this problem. We also split the eddy viscous coefficients into a vortex and a wave 
component. In both cases (unstratified and stratified), comparisons with direct 
numerical simulations are performed. 

Finally we propose a generalization of the spectral eddy viscosity to highly 
intermittent situations in physical space : in this structure-function model, the spectral 
eddy viscosity is based upon a kinetic energy spectrum local in space. The latter is 
calculated with the aid of a local second-order velocity structure function. This 
structure function model is compared with other models, including Smagorinsky’s, 
for isotropic decaying turbulence, and with high-resolution direct simulations. It is 
shown that low-pressure regions mark coherent structures of high vorticity. The 
pressure spectra are shown to follow Batchelor’s quasi-normal law : aCE eik-5 (C, is 
Kolmogorov’s constant), with a x 1.32. 
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1. Introduction 
It is well known that direct numerical simulations of the Navier-Stokes equations 

in turbulent situations, which take complete account of all the scales of motion, are 
limited to relatively small values of the Reynolds number : for instance, direct 
numerical simulations using pseudo-spectral techniques with 1283 collocation points 
allow one to reach a maximum value of R, x 80, where R, is the Reynolds number 
based on the Taylor microscale. Hence, high-Reynolds-number turbulence cannot be 
computed accurately at all scales. In many cases, attention is directed towards the 
large scales, since they contain most of the energy of the flow. Thus, the small scales 
have to be modelled through a proper subgrid-scale parameterization. 

The problem is extremely difficult and not yet resolved, particularly when working 
in physical space with finite-difference methods : the large scales are defined with the 
aid of an adequate spatial filtering of the equations of motion, and the subgrid-scale 
terms are generally expressed in terms of eddy-coefficients (see, e.g. Rogallo & Moin 
1984, for a review). Another approach consists in working in Fourier space, which is 
possible only if the boundary conditions are simple enough (periodic or free slip for 
instance). In this case, the large scales correspond to low wavenumbers, and the 
explicitly resolved scales can be defined by retaining the Fourier wave vectors k such 
that k = Ikl < k,, where k, is the cutoff wavenumber: this corresponds to a sharp 
filter in Fourier space. The time-evolution of the modes within the interior of the 
sphere of radius k, is coupled with that of the truncated modes lying outside the 
sphere. If the latter are simply ignored, and if the viscosity is sufficiently low, it is 
well known that the system evolves towards an equipartition of energy between the 
modes (which yields a k2 kinetic energy spectrum in the case of three-dimensional 
isotropic turbulence; see Lee 1952). This point can be checked easily with the aid of 
a direct numerical simulation. Such an equipartition is of course unacceptable if k, 
lies in the Kolmogorov kf range. Hence, a subgrid-scale parameterization is needed. 

In  this paper, we use the concepts of spectral eddy viscosity and eddy diffusivity 
for this purpose: $2 will recall the essence of the parameterization, and discuss its 
limitations, especially in the neighbourhood of k,. Section 3 will present isotropic 
decay calculations for the velocity and the scalar fields with a direct evaluation of the 
spectral eddy coefficients and of the probability density functions (p.d.f.) of the 
various unknowns and of their derivatives. In 54, the influence of a stable 
stratification will be studied a t  the same high resolution (12P). Finally, a new 
subgrid model taking into account the spatial internal intermittency of turbulence 
will be presented in $5.  This structure-function model will, for isotropic turbulence, be 
compared with the standard spectral eddy viscosity and Smagorinsky’s model. 
Particular emphasis is put on the pressure fluctuations, from statistical, spectral and 
topological points of view. 

2. Eddy viscosity and diffusivity in Fourier space 
2.1. The spectral eddy viscosity in three-dimensional isotropic turbulence 

The concept of k-dependent eddy viscosity was introduced by Kraichnan (1976) for 
three-dimensional isotropic turbulence, in the following way : if T,,Jk, t )  is the 
kinetic energy transfer across the cutoff k,, corresponding to triadic interactions such 
that k < k,, p and (or) p > k, (see Lesieur 1987 for details), one can pose 
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in such a way that the kinetic energy spectrum E(k,  t )  in the resolved scales (k  < k,) 
satisfies 

where T<kc(k,  t )  is the kinetic energy transfer corresponding to resolved triads such 
that k , p ,  q < k,. Equation (2.2) is exact, but a closure assumption is needed in order 
to determine vt(klkc) : Kraichnan (1976) used the test-field model and showed that, 
in an infinite k-3 range, the normalized eddy viscosity v,(klk,)/&k;t is constant up to 
k < 0.3kC, and displays a sharp positive cusp in the neighbourhood of k,. Chollet & 
Lesieur (1981) (see also Chollet 1984, 1985) used the eddy-damped quasi-normal 
Markovian theory (EDQNM, see e.g. Lesieur 1987 for details) for decaying turbulence 
with k,  lying in a Kolmogorov inertial range of finite amplitude (about four decades), 
and found approximately the same results. In the latter analysis, the EDQNM 
velocity triple-correlations adjustable constant a,, which is defined precisely in (2 .8) ,  
was chosen equal to 0.36 in order to recover a value of 1.4 for the Kolmogorov 
constant (see (2 .9) ) .  

Chollet & Lesieur (1981) proposed using the eddy viscosity (2.1) in the 
Navier-Stokes equations in Fourier space, as a way of modelling the subgrid scales 
corresponding to k > k,. The equation of motion for the explicit velocity ri(k,t) 
becomes 

[ i+ (v+u , (k lk , ) )k2  1 W , t )  = t<kc (k , t ) ,  (2-3)  

where ttk,(k, t )  stands for the explicit nonlinear triadic interactions, with k ,  p and 
q such that k , p ,  q < k,. As noticed by Lesieur (1987, p. 234), an EDQNM procedure 
applied to (2 .3)  yields (2 .2) ,  T<kc(k,t)  being written using the general EDQNM 
expression in terms of kinetic energy spectra, truncated in order to retain only p and 
q < k,. It is of course recognized that two-point closures pose problems for describing 
strong departures from Gaussianity (see Herring 1990). But they seem to predict the 
right energetics, at least from the point of view of kinetic energy transfer. Hence, the 
EDQNM eddy viscosity is believed t o  work nicely from this point of view. 

The main criticism of (2.3) concerns the fact that the eddy viscosity v,(klk,) does 
not depend upon the orientation (or ‘phase ’) of the velocity vector ri(k, t )  in Fourier 
space. However, when k < k,, and due to the separation of space and time scales, 
there is no reason, in isotropic turbulence, to expect that the subgrid-scales will 
instantaneously affect the phase of the velocity field at k :  this would require a finite 
time, comparable to the time taken by an error in the small scales to contaminate the 
large scales in the predictability problem (see e.g. MBtais & Lesieur 1986). Hence, an 
eddy viscosity which correctly extracts the kinetic energy is all right in this case. On 
the other hand, the validity of this eddy-viscosity concept for large-eddy simulation 
(LES) purposes is of course questionable in the neighbourhood of k,, owing to 
velocity phase shifts between triads of modes k ,  p ,  q of the order of k,. But, since the 
other existing theories which try to derive analytically the eddy viscosity, such as 
the renormalization-group techniques (RNG, see e.g. Fournier 1977, or Yakhot & 
Orszag 1986), or the homogenization techniques (BBgue et al. 1987), all assume a 
separation of scales, there is at  present no way of escaping the eddy-viscosity 
assumption over the whole span of wavenumbers up to k,. 
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A modification by Chollet & Lesieur (1981) of Kraichnan's (1976) eddy viscosity, 
was to employ [E(k,)/k,]f  instead of &kit in order to normalize the eddy viscosity. 
But they retain for the non-dimensional eddy viscosity the infinite (or large) 
Kolmogorov-range expression. This yields 

where v,+(k/k,) can be approximately expressed as (Chollet 1985) : 

u:(k/k,) = 0.267 +9.21 e-3.03(kc/k). (2.5) 

The advantage of working with (2.4) and (2.5) is that no energy is extracted from the 
system in the early stage of the cascade, when no energy has yet reached the cutoff. 
But the modelling is still limited by the fact that (2 .5)  assumes a wide inertial range 
about k,. 

For k 4 k,, the spectral eddy viscosity can be considered in a slightly different (and 
more general) manner : through expansions with respect t o  the small parameter k/k, 
(see e.g. Lesieur 1987, p. 120), the transfer across k,, calculated using the EDQNM 
theory, is written 

2 
--'k, 15 k ,  k 2 / k c ( k / k c ) 5 k 3 E ( k ) 2  

Here ekpq is the EDQNM relaxation time for triple correlations, which we will take 
in this expansion to be in its 'stationary ' form : 

with 

Notice that in the above expansions, 8 is not expanded. a, is related to the 
Kolmogorov constant C, by the following relation (Andre' & Lesieur 1977) : 

a, = 0.2lSCg. (2.9) 

It can be shown that, provided that the kinetic energy spectrum decreases above 
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k,, with E(k, )  < E ( k ) ,  the non-negligible term on the right-hand side of (2 .6)  is the 
fifth one, which yields 

T,, , (k , t )  = dp = - 2 v 7 k 2 E ( k ) .  (2.10) 

It corresponds to an eddy viscosity given by 

(2 .11)  

A similar expression was previously proposed by Kraichnan (1966) using the 
Lagrangian-history direct interaction closure approximation (LHDIA). Notice that 
the k4 backscatter transfer (last term on the right-hand side of ( 2 . 6 ) )  is here negligible: 
it becomes important for k < k, (k ,  is the peak of the kinetic energy spectrum), as 
shown in Lesieur & Schertzer (1978).  The resulting infrared E ( k )  cc k4 behaviour 
which occurs when the initial kinetic energy spectrum rises faster than k4 for low k ,  
has been found in direct numerical simulations starting initially with an energy peak 
at high wavenumbers (R. S. Rogallo 1988, private communication). 

If k, lies in the middle of an extended k-) range, (2 .11)  allows one to recover 
v,(Olk,, t )  given by (2 .4)  and (2 .5)  (see Chollet 1984), even though k does not belong 
to this range. This is encouraging for large-eddy simulations of the energy-containing 
range. But (2.11) is even more general, in the sense that it allows the determination 
of the eddy viscosity when the spectrum at k, does not follow the Kolmogorov law. 
We stress again that this eddy viscosity might describe the subgrid-scale momentum 
transfers very well, since k -4 k,. If one assumes, for instance, that E ( k )  cc k-" above 
k, 4 k,, it is easy to show, using the EDQNM, that, for m < 3 (and neglecting 
molecular viscosity in (2 .7) )  

(2.12) 

In the particular case m = g, one recovers the plateau value at 0.441C;;i, in good 
agreement with (2 .5) .  However, in the transient stage before a k-i spectrum is built 
up a t  k, (with m > g ) ,  the normalized eddy-viscosity plateau will be smaller, since the 
right-hand side of (2.12) is a decreasing function of m: it is for instance equal to 0.185 
instead of 0.267 form = 2.  If m > 3, (2 .12)  is no longer valid. If m > 3, OoPp in (2.11) 
is approximately constant and of the order of 1/[2al[D(k,)] i ] ,  where 

D( k,) = k2E( k )  dk 

is the enstrophy contained in the large scales. In  this case, the eddy viscosity can be 
written as 

(2 .13)  1 5-m lE(k , ,  t)  V? x %D(ki)-iJk:E(k)dk = -- D(ki )T- ,  
30a1 30a, m- 1 k, 

and v p  now scales as [E(k,) /k , ] .  In any case, it is still proportional to (5 -m) ,  and of 
same sign. Therefore, it will cancel at m = 5, and will become negative for higher 
values of m. In fact, explicit calculations of the spectral eddy viscosity have been 
done by Domaradzki et al. (1987) with the aid of direct numerical simulations: 
defining a fictitious cutoff k,, the kinetic energy transfers between k < k,  and the 
range p and (or) q > k, can be evaluated without any closure assumption. The results 
show very low (and sometimes negative) values for the plateau of v,(klk,), normalized 
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by [E(k,,  t ) /k , ] f .  This result, confirmed by similar calculations presented below, is 
certainly ascribable to the fact that in these calculations, which involve low 
Reynolds numbers, the kinetic energy spectrum at the cutoff is much steeper 
than k-i. 

2.2. The spectral eddy diffusivity 
The above spectral eddy-viscosity concepts have been extended by Chollet (1984, 
1985) to the large-eddy simulation of a passive scalar (called here the temperature T, 
of molecular conductivity K )  in the following way: let TTkc(k,  t )  be the temperature- 
variance transfer across the cutoff k,, and K,( klk,) the spectral eddy-diffusivity, 
defined by 

(2.14) 

E,(k,  t )  being the temperature spectrum in the resolved scales. The latter satisfies 

(2.15) 

where TTkc(k ,  t )  is the explicit temperature kinetic energy transfer. Again, a closure 
assumption is needed in order to determine ~ , ( k l k , )  : Chollet (1984, 1985) used the 
EDQNM in very wide k f  Kolmogorov and Corrsin-Oboukhov inertial-convective 
ranges, with two sets of scalar-velocity triple-correlation constants a2 and a3, whose 
choice is discussed in Herring et al. (1982). He found for ~ , ( k l k , )  expressions 
analogous to (2.4), that is 

(2.16) 

where the non-dimensional eddy diffusivity K:(k/k,) depends upon the choice of the 
constants : in the first case (‘corresponding to LHDIA ’, a2 = 0 ) ,  the eddy diffusivity 
is nearly proportional to the eddy viscosity, with a turbulent Prandtl number 
v,(klk,)/h-,(klk,) close to a constant of the order of 0.6. In the second case 
(‘ corresponding to DIA ’, a2 = a3 = al ) ,  the normalized eddy diffusivity still displays 
a plateau up to k = 0.3kC and a positive cusp above ; the turbulent Prandtl number 
has a plateau value of fr, and a positive cusp where it rises to 0.6. 

Again, EDQNM non-local expansions of the temperature subgrid-scale transfer 
lead, for k -4 k,, to 

with 

(2.17) 

(2.18) 

Here, O&,, is the scalar-velocity triple-correlation relaxation time, expressed here as 

(2.19) o’” - p’’ (k)+pu’(p)+p”(q)+K(k2+p2)+ vq2’ 
1 T -  

with (2.20) 

(2.21) 

An expression similar to (2.18) was previously determined by Kraichnan (1968) (with 
the aid of LHDIA). One recovers, if k, lies in an extended Kolmogorov inertial range, 
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the asymptotic value Kt(Olkc,t) of (2.16). If one considers a k-" kinetic energy 
spectrum extending about the cutoff, the corresponding 'plateau ' of the turbulent 
Prandtl number is given, for any m, by 

= (5-m)-. 
20a, 

For m = $, the corresponding turbulent Prandtl number is 

(2.22) 

(2.23) 

equal respectively to 0.6 and Q for the two choices of the a2, a3 parameters, as stressed 
above. The corresponding eddy diffusivity is, for m < 3, 

4 (3-m); E(kc,t) 
3(a2+a,) m + l  [ k, 1 '  ~~ K T  = 

For m > 3, the eddy diffusivity is approximately given by 

(2.24) 

(2.25) 

It is interesting to note that, for m = 5, when the eddy viscosity cancels, the eddy 
diffusivity is finite. This will be confirmed by the direct numerical simulations 
presented below. 

Notwithstanding the difficulties stressed above, we will use in most of the following 
large-eddy simulations the eddy viscosity defined by (2.4) and (2.5), considering it as 
an upper bound of the actual eddy viscosity. It will be seen below that this choice 
does lead to fairly good results for the velocity field in three-dimensional isotropic 
turbulence. We will also use the eddy diffusivity defined by (2.16), with a turbulent 
Prandtl number of 0.6, for large-eddy simulations of the passive temperature. Other 
calculations carried out a t  a turbulent Prandtl number of 0.3, or even varying with 
k (see Lesieur & Rogallo 1989), give the same isotropic passive-scalar behaviour. We 
point out that the above isotropic analysis shows that the eddy coefficients do not 
depend upon the velocity and temperature fields in the large scales. This is why we 
believe that the procedure can be applied to anisotropic or inhomogeneous 
turbulence, provided the subgrid scales k > k, are isotropic. It has been used 
successfully to simulate the large scales of stably stratified homogeneous turbulence 
(MQtais & Chollet 1989, see also $4 of the present paper)?, and of the turbulent 
mixing layer (Comte, Lesieur & Fouillet 1990). 

2.3. The need for high-resolution large-eddy simulations 
In earlier spectral LES studies of homogeneous turbulence (isotropic or stably 
stratified) carried out by Chollet and colleagues (Chollet & Lesieur 1981 ; MQtais & 
Chollet 1989), the resolution ( 323) was very low. Encouraging results were obtained 
concerning the decay laws and the tendency for k-4 kinetic energy and temperature 
spectra at the cutoff. But the influence of the cusp in the eddy coefficients could not 
be seen in the results, and the poor precision in the decay laws did not allow one to 
distinguish between the unstratified and stratified cases. Higher-resolution cal- 
culations (643 and 12P) of three-dimensional isotropic decaying turbulence 
convecting a passive temperature, done by Lesieur & Rogallo (1989), Lesieur, MQtais 

t Atmospheric measurements performed by Kaimal et al. (1972) give good evidence of small- 
scale isotropy in stably-stratified turbulence (see also Hunt & Vassilicos 1991 for a review). 
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& Rogallo (1989) and MBtais & Lesieur (1989) showed some ' anomalous behaviour ' of 
the temperature, with respect to  EDQNM predictions. The aim of the following 
sections is to :  (a) present and discuss the anomalous behaviour of the passive 
temperature, on the basis of a 1283 LES calculation with initial spectra peaking a t  
k, = 20. We will in particular examine the probability density functions of the 
velocity and the temperature ; ( 6 )  perform stratified decay calculations with the same 
code, in order to  investigate whether the above passive-scalar results persist when 
the temperature is dynamically coupled with the velocity. 

3. Decay of three-dimensional isotropic turbulence 
The velocity fluctuation O(k, t )  and the passive temperature fluctuation p(k, t ) ,  

respective Fourier transforms of u(x ,  t )  and T ( x ,  t ) ,  satisfy the spectral large-eddy 
simulation equations : 

@ / a t  + ( v +  v,(klk,)) k2) 6 = n[F[F-l(O) x F - ' ( 6 ) ] ] ,  
( a / a t + ( K + K , ( k l k , ) )  k2) 5! = -ik-F[F-'(?)F-'(O)], 

(3.1) 
(3.2) 

k*O(k, t )  = 0, (3.3) 
where F stands for the discrete Fourier transform operator, 17 is the projector on the 
plane perpendicular to  k ,  and 6 = ik x 6 is the vorticity in Fourier space. v,(klk,) 
and q(klk,) have been defined in $2, and v and K are the molecular viscosity and 
conductivity. I n  the large-eddy simulation, the molecular coefficients are negligible 
in comparison to  the eddy coefficients : it  is in this sense that we will refer to infinitc- 
Reynolds-number large-eddy simulations. For the same reason, no molecular 
Prandtl number variation need be considered, and we can consider that  the 
calculations correspond to a molecular Prandtl number of the order of 1. In  the direct 
numerical simulations, the eddy coefficients in (3.1) and (3.2) are set equal to zero. 
The molecular Prandtl number is equal to  1. 

The initial kinetic and temperature spectra are identical and equal to 
E(k,  0) = E,(k, 0) = Ak8exp [ -4[k/ki(0)]2], (3.4) 

and peak a t  k = ki(0). Here, A is chosen such that the initial mean kinetic energy 

K at low wavenumbers will immediately pick up a k4 infrared behaviour when 
a > 4 (Lesieur & Schertzer 1978): here, we chose a = 8. The ratio between kinetic 
energy and scalar variance initial spectral peaks is chosen equal to one: we do not 
investigate here the influence of this parameter (see Antonopoulos-Domis 1981, for 
a discussion on that point). To solve (3.1)-(3.3), we use pseudo-spectral numerical 
code (collocation method). Calculations are carried out with 12€13 wavevectors. For 
time discretization, we use a leap-frog scheme (stabilized by periodic averaging) with 
a Crank-Nicholson treatment of viscous and conductive terms. Boundary conditions 
are periodic in the three directions. 

3.1. Large-eddy simulation 

We take k,(O) = 20, and the cutoff wavenumber is k, = 60. The molecular viscosity 
is taken equal to 10-lo. The results of this simulation are described in detail in 
Lesieur et aE. (1989). We briefly recall here the main results. In  the initial phase, the 
temperature cascades faster than the velocity field towards small scales, in 
qualitative agreement with closure results described in Lesieur, Montmory & Chollet 
(1987). Then, the kinetic energy and the scalar energy respectively decay like t-'.37 
and t-'.85. The agreement with the EDQNM predictions (t-'.38 for an initial kinetic 

&2 - - jE(k, 0) dk = 1.5. EDQNM theory predicts that  an initial spectrum varying as 
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FIGURE 1. Kinetic energy spectrum E ( k )  and temperature spectrum E,(k)  at t = 600/v, k,(O), 

large-eddy simulation. 

energy spectrum E(k,O)  K ks when k+O, with s 2 4) is excellent for the kinetic 
energy. However, the statistical theory yields a very different law for the decay of 
the passive-scalar energy (t-'.48). 

Figure 1 shows, a t  t = 60/w,k,(O), the kinetic energy and temperature spectra. It 
is obvious that the temperature variance has decayed much faster than the kinetic 
energy. The temperature peak, initially equal to k,, has migrated much faster 
towards low wavenumbers. This is also in contradiction with the EDQNM predictions 
of Lesieur et al. (1987). The kinetic energy spectrum at the cutoff is close to k-i, with 
a Kolmogorov constant, measured from the compensated spectrum k b ( k ) ,  of the 
order of 1.5. However, the kinetic energy seems somewhat constrained by k,, 
resulting in a slope close to k-2 in the vicinity of k,. The temperature spectrum agrees 
quite well with Corrsin-Oboukhov's law 

at the cutoff (where 7 is the temperature dissipation rate), with a constant close 0.9. 
But the most striking feature of this spectrum is the formation, for k < 30, of a range 
close to a k-' power law. Lesieur & Rogallo (1989) propose that this spectral 
behaviour is due to a temperature diffusion controlled by the shearing due to velocity 
gradients at scales - k;' : assuming a temperature variance flux 7 independent of k,  
an Oboukhov-type argument yields 

where 7 ( k i )  is the turnover time of k,. At high Reynolds number, and when turbulence 
has reached an asymptotic self-similar state, this time may be approximated as 
(u2) /s .  This yields 

E,(k)  - y d k - i ,  (3.5) 

7 = kET(k ,  t ) / 7 ( k i ) ,  (3.6) 

(3.7) 
E,(k , t )  = C,q-k- l ,  (u2> 

where C, is a constant. This prediction seems at first sight to be oversimplistic. 
However, when renormalized by (3.7), the whole time-evolution of the temperature 
spectrum eventually collapses nicely on a plateau of nearly one decade, with a value 
of the constant C, x 0.1. Details are given in Lesieur et al. (1989). Other calculations 
done with different initial conditions gave the same value for C, (Lesieur & Rogallo 
1989). The phenomenology leading to (3.7) resembles that of the viscous-convective 
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FIQURE 2. Spectral eddy-viscosity v: and eddy diffusivity K: normalized by [E(k3/k:]:  (kf = 30), 
corresponding to figure 1. 

range proposed by Batchelor (1959) for high-Prandtl-number turbulence. However, 
Batchelor's range is located a t  high k beyond the inertial-convective range, where 
the turnover time is (c /v)- i .  On the other hand, our present k-' range affects energy- 
containing eddies, below the inertial-convective range. Actually, this phenom- 
enology is very close to the inertial-convective range in the enstrophy cascade of 
two-dimensional turbulence, where (3.6) also applies, 7 ( k i )  being replaced by /Tf 
(where p is the enstrophy dissipation rate ; see Lesieur 1990). Indeed, some evidence 
will be given below that large coherent quasi-two-dimensional vortices, randomly 
oriented, might exist in three-dimensional decaying isotropic turbulence. These 
vortices might be responsible for the large-scale intermittent character of the passive 
scalar which will be shown below. As noticed by J. R. Herring (1989, private 
communication), (3.7) is not invariant under a random-Galilean transformation, due 
to the presence of (u2).  In  fact, this velocity variance arising in (3.7), and used in 
order to calculate a characteristic straining time at  k,, corresponds to motions - k, : 
it does not comprise any artificial input of energy at  k = 0 due to a random-Galilean 
transformation. 

We next compute the spectral eddy viscosity and diffusivity, following a method 
employed by Domaradzki et al. (1987) for a direct numerical simulation : one defines 
a fictitious cutoff wavenumber kh = gk, = 30, across which the kinetic energy and 
temperature transfers are evaluated. Since we are dealing with a large-eddy 
simulation, the latter correspond to triadic interactions such that k < k; ,  p and (or) 
q > k; and p ,  q < k , :  they are termed T z::(k,  t )  and T r k c ( k ,  t ) .  T z f :  satisfies 

(3.8) 
where T.,k; and TzkC are the total kinetic energy transfers across k; and k ,  (see (2 .1) ) .  
A similar relation holds for TCkc.  When divided by -2k2E(k, t )  and -2k2E,(k,t), 
they give the spectral eddy viscosity and diffusivity. Figure 2 shows, at  the same 
time as in figure 1, these functions, normalized by [E(kh)/k;]i. The normalized eddy 
viscosity v: displays a plateau of intensity 0.15 far from k;. However, for k < kh, (3.8) 
gives 

T z z ( k ,  t )  = T,%(k, t ) - T > k c ( k ,  t ) ,  
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FIGURE 3. Same as figure 1 but for direct simulation and t = 17/v, k,(O). 

Assuming that k; and k, lie in a k-i range, (3.9) becomes 

(3.10) 

This gives, for the vt plateau, a corrected intensity 0.15 x 1.66 x 0.25, close to  the 
EDQNM value 0.267. The normalized eddy-viscosity cusp is somewhat eroded, due 
to the proximity of k, with respect to k,, in good agreement with Chollet’s (1984) 
EDQNM results. The eddy diffusivity K:, on the other hand, has no plateau, and 
decays logarithmically with k in the range where v: is constant. In this range, the 
eddy Prandtl number increases from 0.2 to 0.8. This surprising logarithmic 
behaviour seems to be related to the existence of the anomalous temperature k-l 
range, and hence to the large-scale scalar intermittency. A possible way of checking 
this idea would be to look whether such behaviour exists in two-dimensional isotropic 
turbulence. To our knowledge, this study has not been carried out yet. 

Notice finally that the spectral eddy viscosity given by (2 .5)  (but with a different 
set of coefficients) has been used by Batchelor, Canuto & Chasnov (1992) in a large- 
eddy simulation study of buoyancy-driven turbulence. 

3.2. Direct numerical simulation 
We also performed a direct numerical simulation, with k,(O) = 8, which allows RA < 
52. We let the turbulence evolve until t = 17/v,k,(O). At the end of the run, the 
kinetic energy decays like P6, and the temperature like t-2*6. Decay exponents are 
larger than the EDQNM or the large-eddy simulation ones, because of the small 
values of the Reynolds and PBclet numbers (R, 2 20 at the end of the run). Figure 
3 shows the kinetic energy and temperature spectra at this time. There is no tendency 
to any k-i ranges, since the Reynolds and PBclet numbers me too low. But the 
temperature still tends to form a range slightly milder than k-l. However, we have 
checked that the above scaling (3 .7)  is no longer valid, certainly because the shearing 
time at  ki may no longer be expressed as (u2/e) .  

Again, we have evaluated directly the spectral eddy-viscosity and diffusivity , from 
the transfers across k;: figure 4 represents the eddy coefficients normalized by 
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FIGURE 4. Same as figure 2 but for direct simulation and t = 17/w,k,(O). 
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-0.022 -0.435 0.00027 0.0061 0.018 17 0 
4.69 3.85 4.02 5.58 5.47 17 0 

4.84 3.77 3.18 6.02 6.47 17 $I 

5.59 3.61 3.11 4.75 4.16 99 +?I 

-0.0039 -0.376 -0.012 0.019 1.027 17 

0.047 -0.057 -0.060 0.051 0.599 99 .$ 

TABLE 1 

[ E ( k 3 / k 3 ; .  Both coefficients exhibit a rapid growth near the cutoff. The plateau of 
the eddy viscosity is very close to zero, with negative values in the smallest 
wavenumbers as already noticed by Domaradzki et al. (1987). On the other hand the 
eddy diffusivity exhibits finite values, and behaves logarithmically as in the large- 
eddy simulation. 

In  fact, since the slope of E ( k )  on figure 3 is intermediate between kP4 and kP5, it  
might be that the right scaling should be given by (2.13) and (2.25), still 
corresponding to a very low eddy viscosity, and a finite eddy diffusivity. 

We next examine the probability density function P ( X )  for both velocity and 
scalar fields and their derivatives at the end of the run. Corresponding skewness and 
flatness factors are given in table 1.  The skewness (8) and flatness factors (F) of a 
distribution f are given by : S, = (f ">/( f "4, Ff = (f f 2)2 ; x, y, z are the 
components of x in a right-handed Cartesian coordinate system, u, v, w are the 
corresponding components of u. As in grid turbulence experiments (Batchelor 1953), 
figure 5 ( a )  shows that P ( X ) , X =  u, is close to Gaussian (8, x O;F, x 3). For 
isotropic turbulence, longitudinal derivative skewness Sau/az is a non-dimensional 
measure of enstrophy production by the nonlinear terms of the equations (enstrophy 
produced by vortex stretching; see e.g. Orszag 1977) : the &/ax distribution is then 
skewed (figure 5 b ) .  Values for Saulax and (see table 1) are in good agreement with 
those obtained, a t  comparable Reynolds number, in laboratory experiments 
(Tavoularis, Bennett & Corrsin 1978) and in previous numerical simulations (Orszag 
& Patterson 1972). 9(au/az) seems close to an exponential function in the wings 
(figure 5 c ) .  differs appreciably from its Gaussian value Fau/az = 4.59. However, 
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FIQURE 5. Probability density function 9 ( X )  : (a) X = u ;  ( b )  X = &/ax; ( c )  X = au/az;  ( d )  X = T; 
(e) X = aT/az.  ----, Large eddy-simulation ; -, direct simulation (the functions are normalized 
so that their variance is equal to 1 )  ; ......., Gaussian distribution. (f) X = pressure field : -, 
direct simulation ; -----, Gaussian kinematic field. (9 )  Same as (f) for large-eddy simulation. 
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FIGURE 6. Three-dimensional plot of the passive-scalar fluctuation, direct numerical simulation at 
t = 17/w, k,(O) ; tth of the computational domain is represented. It is centred on the instantaneous 
fluctuations extremum. The grey surface corresponds to 40% of this extremum. 

isotropy implies Xazllaz x 0. Similar results were found in the lower-resolution 
isotropic direct numerical simulations performed by MBtais & Herring (1989). The 
reader will find in this reference a discussion of possible analogies with similar 
findings in various experiments in thermal convection or in turbulent shear flows. 
High-Reynolds-number experimental measurements show that the tails of the 
velocity-derivative probability density function deviate from truly exponential 
behaviour (Gagne 1987 ; Castaing, Gagne & Hopfinger 1990). Several theoretical 
models have been proposed to explain this deviation (Kraichnan 1990; Castaing et a2. 
1990). Notice that in our calculations as well as in others done by Yamamoto &, 
Hosokawa (1988) and Vincent & Meneguzzi (1991), the p.d.f. of the various vorticity 
components is also highly non-Gaussian in the wings, as in two-dimensional 
turbulence calculations done by McWilliams (1989). In the latter case, this 
distribution is due to the condensation of vorticity into spots, that is a vorticity 
large-scale intermittency : the pressure lows, which are well correlated with intense 
vorticity, should then be non-Gaussian, in such a way that the pressure p.d.f. is 
expected to be highly skewed towards low values. 

Figures 5 ( d )  and 5 ( e )  show respectively the probability density of T and aT/az : 
surprisingly, not only aT/az, but also T, is close to an exponential function. Owing 
to the isotropy of the velocity field, neither the temperature fluctuations nor their 
derivatives are skewed (see table 1 ) .  The scalar-variance flatness is 4, which is 
different to the Gaussian value found in the experiment of Sreenivasan et al. (1980) 
and the simulation of Kerr (1985). The forcing introduced in Kerr’s simulation in 
order to maintain steady-state turbulence could be the origin of the difference. The 
departure from Gaussianity for the scalar-fluctuation p.d.f. indicates a large-scale 
intermittency. Indeed, the temperature presents very strong fluctuations in small 
spatial regions, with quiescent regions being more likely the result of random 
sampling. This is illustrated on figure 6, which represents a three-dimensional 
isosurface (40 YO of the extremum) of the scalar fluctuations. This plate shows, at the 
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end of the run, &h of the computational domain centred on the extremum. 
Extremely concentrated scalar structures are apparent. The departure from 
Gaussianity is stronger for the temperature derivative than for the velocity 
derivative. Larger values for the scalar derivative flatness, compared to the velocity 
derivative flatness, are in good agreement with experimental values (Antonia et al. 
1978; Sreenivasan et al. 1980; Antonia et al. 1982). The weaker velocity inter- 
mittency could be attributable to the non-local effect of the pressure which tends to 
redistribute the velocity fluctuations. 

Figure 5(a-e) also shows the p.d.f.s of u, &/ax,  aulaz, T ,  aT/az as given by the 
large-eddy simulation of $3.1, at the end of the run. The higher p.d.f. in the wings 
obtained in the direct numerical simulation might be due, as suggested by one 
referee, to the lower kinetic energy peak k,(O), implying that the small scales are 
better resolved. 

Figures 5 ( f )  and 5(g) show the pressure p.d.f. respectively for the direct numerical 
simulation and the large-eddy simulation using the structure function model which 
will be described in $5 : this p.d.f. is compared with that of a fictitious pressure field 
calculated from a Gaussian velocity field of same kinetic energy spectrum. The highly 
skewed shape might be evidence of the large-scale vorticity intermittency advocated 
above in the case of two-dimensional turbulence. However, this is also shared by the 
kinematic Gaussian evaluation, so that it is difficult to interpret this result in terms 
of coherent structure dynamics. Notice also that we have not plotted the pressure 
p.d.f. for the LES using the spectral eddy viscosity, but it is feasible that it will 
behave in the same manner. 

3.3. Discussion 
The spectral large-eddy and direct numerical simulations of decaying turbulence 
described here show anomalous behaviour of a convected passive temperature. The 
kinetic energy decay is in good agreement with statistical theory predictions 
(Herring et al. 1982) and laboratory experiments (Yeh & Van Atta 1973; Warhaft & 
Lumley 1978). For the passive scalar on the other hand, the ratio LILT of the 
respective velocity and temperature integral lengthscales shifts from 1 initially to 
0.76 at the end of our run. This implies a temperature decay weaker than the kinetic 
energy decay, if one accepts the phenomenological prediction of Corrsin (1964) that 

a E / a T  - (LT/L)', (3.11) 

where aE and aT are respectively the kinetic energy and temperature variance decay 
exponents (see Lesieur 1987 for details and Herring et al. 1982 for the role of the 
Reynolds number). However, aT is found in the large-eddy simulations to be 
significantly higher than aE. Similar findings have been made by Warhaft & Lumley 
(1978) in their heated-grid experiment in the case of strong heating (see their figure 
13), although they have attributed this unexpected behaviour to the relatively high 
level of anisotropy. For weaker heating, their findings were much closer to theoretical 
predictions. Moderate-Reynolds-number experiments by Yeh & Van Atta (1973) and 
by Warhaft & Lumley (1978), where the temperature is injected at  the same scale as 
the kinetic energy, show a temperature spectral range of slope -%, although no 
inertial range is apparent for the corresponding kinetic energy spectrum. In high- 
Reynolds-number EDQNM calculations, with the same type of initial conditions, the 
temperature spectrum also displays a well-defined k-i slope before establishing a kf 
inertial-convective range and decaying self-similarly (Herring et al. 1982 ; Lesieur 
et al. 1987). Furthermore, the test field model closure calculations of Herring (1990) 
indicate a fairly good agreement with the LES of Lesieur & Rogallo (1989) except for 
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a steeper temperature slope given by the closure. The shallower slope given by the 
LES as compared to the test-field model calculations could be the result of the strong 
large-scale scalar intermittency which cannot be reproduced by the statistical 
theory. This suggests that the anomalous temperature slopes observed in the 
experiments and in the closure calculations are the analogue of the k-l temperature 
slope observed in the present simulations, and could be attributable to the shearing 
of the scalar by the large-scale velocity gradients. The question to be asked concerns 
the possible transient nature of this k-' spectrum. However, it behaves self-similarly 
in our calculation. 

Atmospheric and oceanic measurements of small-scale turbulence seem to confirm 
the universal nature of the velocity spectrum in the Kolmogorov inertial range. 
However, they suggest that the Corrsin-Oboukhov theory does not provide a 
universal description of (passive) temperature fluctuations in water nor in air (see e.g. 
Williams & Paulson 1977 ; Mestayer 1982 ; Gargett 1985). Gargett's (1985) proposal 
that this could be explained by differences in the degree of intermittency in energy 
dissipation and temperature diffusion seems to be confirmed by the present results. 
From a theoretical viewpoint, Van Atta (1971) applied Kolmogorov's (1962) 
lognormal theory to the prediction of corrections of Corrsin-Oboukhov's law, due to 
intermittency. This theory, applied to large-Reynolds-number oceanic data by 
Gargett (1985), produces the right qualitative effects of decreasing the spectral slope 
of the inertial-convective range. In fact, it  ha5 been shown experimentally by 
Anselmet et al. (1984) and Antonia et al. (1984) that velocity and temperature 
structure functions of high order depart from the lognormal prediction. 

4. Stably stratified turbulence 
The scalar, which is still called the temperature (but it may be the potential 

temperature for an ideal gas) is no longer passive but now coupled with the velocity 
field. The velocity and temperature fields satisfy the LES-modified Boussinesq set : 

(4.1) 

(4.2) 
k-ri(k, t )  = 0. (4.3) 

z is directed towards the vertical, and w is the vertical velocity. T is proportional to 
the temperature deviation 8' from the mean temperature profile e ( z )  ; T = g8'/8,, 
with 8, the volume-averaged value of g(z) and g the acceleration due to gravity 
(gravity vector : g = ( O , O ,  - 9 ) ) .  N is the (constant) Brunt-Vaisala frequency : 

( a p t +  ( v  + vt(klk,))  k2) 6 = U[F[F-'(U) x S - ~ ( ~ ) I  + zQ, 
( a p t +  ( K + K t ( k l k c ) )  k2) 9 = - ~ ' ~ - i k . ~ [ ~ - l ( 9 ) ~ - ~ ( 6 ) ] ,  

We have assumed in (4.1) and (4.2) that the isotropic subgrid-scale modelling of 
momentum and temperature is still valid in the stratified case, provided that 
turbulence should be isotropic for k > k,. 

In order to economically describe axisymmetric turbulence, Herring (1974) used 
Craya's (1958) decomposition of the incompressible velocity field (in Fourier space) 
6(k)  into orthogonal components 6, and 6,: 

(4.5) 

(4.7) 

fi(k,  t )  = fil(k, t )  +6,(k,  t ) ,  

with d , ( k  t )  = dl(k t )  e , (k) ,  (4.6) 

fiAk 4 = d2@, t )  e , (k) ,  
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where 

and 

2, is horizontal and horizontally non-divergent, whereas 6, has no vertical vorticity. 
These properties have led Riley, Metcalfe & Weissman (1981) to use ($1,$2) as a 
method of identifying the turbulent (‘ vortical ’) component and the ‘internal gravity 
wave ’ component of stably stratified turbulent flows. Lilly (1983) developed an 
equivalent formulation in physical space. However, this identification is a 
simplication : for unstratified flow, the same decomposition can be performed, $1 and 
q52 are then in equipartition and the above terminology is not relevant (see MBtais & 
Herring 1989; Staquet & Riley 1989 for details). However, we note that (i1,6,) is a 
convenient representation of the turbulence, which has been extensively used in 
anisotropic spectral models of turbulence in order to investigate the non-isotropic 
effects of solid-body rotation and stable stratification (see e.g. Cambon & Jacqujn 
1989; Cambon 1989). For convenience we call Gl(k ) ,  the intensity associated with $1, 

‘vortex ’ kinetic energy spectrum : 

@l(k)  = K d A - k )  dl(kD (4.10) 

and @,(k) the corresponding ‘wave ’ kinetic energy spectrum. 
If slightly displaced, the available potential energy of a particle in a stably 

stratified medium, is proportional to the square of its (small) vertical displacement 
6 from its equilibrium position z. Its  temperature deviation from the ambient 
temperature at  height z + c  is 8’ = [d@(z)/dz. Therefore, the particle’s available 
potential energy is proportional to 8’, (see e.g. Lighthill 1978). Since we consider a 
constant N ,  one can check that the available potential energy spectrum is 

1 ($( -k)$(k) )  
N2 

P ( k )  = - 
2 

(4.11) 

and that the sum of the kinetic energy and available potential energy is conserved 
by the nonlinear terms in the equations of motion. 

We next consider TtkC(k, t )  and T;,$k,t), the vortex and wave kinetic energy 
transfers across a cutoff wavenumber k,. For anisotropic turbulence, they obviously 
depend on the orientation of the wave vector k .  We then define eddy-viscosity 
coefficients 

such that Gr(k, t ) ,  i = 1 , 2  in the resolved scales ( k  < k,)  satisfy 

[ i+2(v+v:(klk,))k2 1 Gi(k,t) = T&(k,t)+%,, 

(4.12) 

(4.13) 

with T& the explicit transfers. 4 = 0 and 93, involves spectral covariances $2 - T .  
In the following sections, the dependency of the eddy-viscosity and eddy-diffusivity 
coefficients on the wavevector orientation will be discarded. We will consider 
coefficients obtained from isotropically accumulated transfers and spectra, and 
which are functions of the modulus of k .  We also define 

(4.14) 
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FIGURE 7. Time evolution of the ‘vortex’ kinetic energy 8, (----), ‘wave’kinetic energy 8, (......), 
potential energy P (-) and total wave energy 6 , + P  (--.-). The time is normalized by 
N = 1.047. 

One can see that vt(klk,) (see (2.1)) satisfies 

vt(k) E ( k )  = v,l(k) @I@) + vt2(k) @2(Q (4.15) 

Starting with the same initial velocity spectrum as in the isotropic case, we let the 
turbulence evolve until it reaches a fully developed state. Then, a t  this time to, the 
stratification is turned on. N is chosen such that the initial effects are dominant over 
the stratification effects (large-Froude-number regime). The initial temperature 
fluctuations are taken equal to zero and will build up due to the mean stratification. 
As in the isotropic case, we will consider successively large-eddy and direct numerical 
simulations. 

4.1. Large-eddy Boussinesq simulation 

We choose N = 1.047 to = 17/w0 k,(O) = 0.47N-1 and let the turbulence decay until 
t ,  = 257/v0ki(0) = 7.1N-l. We define the Froude number: Fr(t)  = w/LN, with 
w2 = 2JF(k)dk, and L = w3/e. The initial Froude number Fr(to) = 3.7. Figure 7 
shows Gl(t) (=  J G1 dk), 62(t), P(t)  and 62(t) + P ( t ) .  The time unit is N-l. The results 
are qualitatively similar to those obtained by M6tais & Herring (1989) (643 spectral 
DNS) and by MBtais & Chollet (1989) (323 spectral LES). The available potential 
energy grows from zero until it is of the same order as the kinetic energy. Then q52 
takes on the character of gravity waves, thus modulating the decay of potential 
energy by a periodic exchange with the wave kinetic energy. 6l does not show 
the oscillations characteristic of &2 and P,  which indicates that (d,, q5J are good 
discriminators (in this case) between waves and turbulence. The total internal wave 
energy (6 - ,+P)  also does not exhibit oscillations, showing that it is equally divided 
between the kinetic and potential forms. Figure 8 shows the time evolution of the 
instantaneous decay exponents oly and aw defined such that 61(t) and 6,(t) +P(t) are 
respectively locally tangent to Pv and taw decay laws. The isotropic kinetic energy 
decay exponent is also plotted. Compared to the unstratified case, the vortex kinetic 
energy undergoes initially a higher damping due to the available potential energy 
buildup. Simultaneously, the wave energy follows roughly an isotropic decay. 
Subsequently, all decay exponents are reduced. However, their decrease in time is 
modulated by the periodic exchange between wave and vortex energies. We will call 
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FIGURE 8. Time variations of the instantaneous decay exponents a” of 6,(t) (stratified case : 
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FIGURE 9. ‘Vortex’ kinetic energy spectrum @,(k) (-), ‘wave’ kinetic energy spectrum @&k) 
(----) , and potential energy spectrum P(k)  (......) at t = 1.48N-’, large-eddy simulation. 

the phase where a, becomes significantly lower than the isotropic decay exponent 
(t  > 5N-l) the ‘collapsed’ state. Before that, the Froude number remains large and 
the spectrum of the turbulent component ($1) is weakly affected by the stratification 
as will be shown below. The average rate of decay for available potential energy is 
comparable with the vortex energy decay. Therefore, there is a drastic difference in 
the temperature decay rates between the unstratified and stratified cases. Thus, we 
focus here on the influence on the temperature field of the velocityaensity coupling. 

4.1.1. Pre-collapse phase 
Figure 9 shows the vortex kinetic, wave kinetic and available potential energy 

spectra at t = 1.48N-’ (Fr = 1.3). The temperature spectrum has lost the anomalous 
character it had in the isotropic case, and looks quite similar to the vortex kinetic 
energy spectrum. The flow is nearly isotropic in the smallest scales: a1(k) m @,(k) a t  
large k. 
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FIGURE 10. Spectral eddy-viscosities u:' (p) and u:'(A) (see (4.14)), and eddy diffusivity K: (0) 
normalized by [E(k6)/k:]r (k: = 30), corresponding to figure 8. 
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FIGURE 11. Same as figure 9 but a t  t = 7.4Zh-'. 

Figure 10 is the analogue of figure 2 for the stratified case. Both components v:' 
and vt2 are represented. Both coefficients are almost identical and do not differ from 
the isotropic eddy viscosity previously found. The normalized eddy diffusivity now 
displays a plateau in the small wavenumbers. The eddy Prandtl number exhibits a 
near constant value of 0.45. Surprisingly, this behaviour is much closer to the 
E D W M  predictions for passive scalars although, through buoyancy, the tem- 
perature is now coupled with the velocity field. 

4.1.2. Post-collapse phase 
At the end of the run, Fr = 0.18. Figure 11 is the analogue of figure 9 at  t = 

7.42N-'. The large scales are dominated by the vortex kinetic energy and the small 
scales by the wave energy. Stratification inhibits the spectral transfer of energy 
towards small scales, leaving less energy in the latter (MQtais & Herring 1989). The 
eddy coefficients at that time are globally reduced as compared to the pre-collapse 
phase and exhibit a well-marked growth near the cutoff wavenumber because of the 
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FIQURE 12. Same as figure 10 but at t = 7.42N-'. 
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FIQURE 13. Same as figure 9 but for direct simulation and at t = 1.233h-'. 

shifting of the spectral maxima towards small wavenumbers (figure 12). The plateau 
intensity for v:' is x0.09. vt2 exhibits the same constant value at  intermediate scale 
but increases with decreasing wavenumber a t  large scale. The eddy Prandtl number 
is close to the previous value Pr x 0.475. 

4.2. Direct Boussinesq simulations 
The initial velocity field is the one obtained in $3.2 ( to  = 3.46/w0 k,(O)) .  The 
parameters are: N =  1.047, Fr(t,) = 1.5. Figures 13 and 14 show respectively the 
vortex kinetic energy, wave kinetic energy and available potential energy spectra at 
t ,  = 17/v, ki(0) = 1.W-' (Fr(t ,)  = 2) and at  the end of the run t ,  = 99/wok,(0) = 
6.8N-' (Fr(t ,)  = 0.25). Comparing with figures 9 and 11, we see that the previously 
described large-eddy Boussinesq simulation allows for the correct qualitative 
spectral behaviour of the large scales. The spectral eddy viscosity and diffusivity 
coefficients are calculated at t, and t ,  (figures 15 and 16). At a later time, the 
Kolmogorov wavenumber decrease forces us to choose k: = 15 instead of 30 in order 
to escape from the dissipative range. As in the LES, the eddy diffusivity exhibits a 
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FIQURE 14. Same as figure 13 but at t = 7.17N-'. 
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FIGURE 15. Same as figure 10 but for calculation corresponding to figure 13. 
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FIQURE 10. Same as figure 10 but for calculation corresponding to figure 14 and kf = 15. 
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FIGURE 17. Probability density function 9 ( X )  : (a) X = T ;  (b )  X = aT/az. Stably stratified direct 
simulation: t = 1.233N-1 (-); t = 7.17W1(----); together with a Gaussian distribution (......). 

FIGURE 18. Same as figure 6 but for stably stratified direct simulation. The z-axis is the 
perspective axis. 

constant value at large scales during both pre- and post-collapse phases. I ts  intensity 
is reduced after the collapse. v:~ slightly increases at large scales. 

As opposed to the isotropic case, both velocity and temperature probability 
densities ( P ( X ) , X  = u and X = T )  exhibit a Gaussian behaviour (see figure 17a and 
table 1). This indicates the disappearance of large-scale temperature intermittency. 
Figure 18, which is analogous to the stratified case of figure 6 ,  illustrates this point. 
However, small-scale temperature intermittency remains. The probability density 
for X = aT/az exhibits a very asymmetrical shape before and after the collapse 
(figure 17 b ) .  The corresponding skewness factors have large positive values (table 1 ) .  
One can propose the following explanation. Since we start with zero temperature 
fluctuations, the dominant term of the right-hand side of (4.2) is initially the 
buoyancy term. Neglecting the diffusive effects, the equation of evolution of T(x)  in 
physical space is simply 

(4.16) -- aT(x, t )  - - N Z W ( X ,  t ) .  
at 
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FIGURE 19. Time evolution (normalized by N )  of the skewness factors -Sau,az (-), -Sawla* 
(----) , and SaTlaZ (...... ), stably stratified direct simulation. 

Differentiating (4.16) with respect to z, we get 

(4.17) 

From (4.17) we get 

(4.18) 

We have 
((aw/az) (aww2) = ST,[((aw/az)2)t((aT/az)2)i, (4.19) 

where STw is the mixed-derivative skewness, found negative in our calculation. For 
isotropic turbulence, -STw is a measure of temperature-variance spectral transfer to 
large wavenumber (Herring & Kerr 1982 ; Kerr 1985). Therefore, ( (aT/a~)~)  will grow 
to a positive finite value, and so will SaTlaz. A more dynamical explanation is that 
locally large negative values of aT/& are convectively unstable and therefore rapidly 
destroyed by buoyancy forces, whereas large positive values enhance stability and 
therefore tend to persist. The skewness of the temperature fluctuation derivative in 
the direction of the mean temperature gradient was also found to be non-zero in the 
laboratory experiment by Sreenivasan & Antonia (1977). In the absence of mean 
shear, SaTlax and SaTIav (given in table 1) remain zero, as in the isotropic case 
(Sreenivasan & Tavoularis 1980). 

Figure 19 shows the time evolution (normalized by N )  of -Saulaz, -Saw/az and 
SaTlaz. Corresponding values for an isotropic velocity field are given in table 1 at 
t ,  = 17/v,ki(0). The turbulence collapse is accompanied by a very strong decrease 
of -Sawlaz. As pointed out by Riley et al. (1981), this indicates an inhibition by the 
stratification of the spectral energy transfer due to the waw/az term in the 
momentum equation. By contrast, -Saulax increases with decreasing Froude number. 
In an initial phase, SaT,az rises to very large values (z 1) .  It then decreases to catch 
up with the horizontal velocity derivative skewness. Figure 20 is the analogue of 
figure 19 for the large-eddy Boussinesq calculation presented in the previous section. 
For the three factors, the time-evolution is qualitatively similar to the previous cam. 
However, in the direct numerical simulation, -Sawlaz drops to much smaller values 
during the collapsed phase. 

- 1 ((aT/w3) = -N2 
3 at 
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FIGURE 20. Same as figure 19 but for large-eddy simulation 

5. Eddy viscosity and diffusivity in physical space 
Spectral large-eddy simulations neglecting v: dependence on k have been 

performed at low resolution (323) by Chollet & Lesieur (1981) and have given 
acceptable results. The eddy viscosity (2.4) was replaced by 

E(k,,t) t 
= , 

with v: = 0.267 (for C, = 1.4), the asymptotic value for k+O. However, in these 
calculations, the global drain of energy out of the large scales was found to be too 
weak and might have been improved with the use of the average eddy viscosity e(t) 
defined by Leslie & Quarini (1979). Indeed, the energy balance in this case leads to 
(since the computed explicit energy transfer is conservative) : 

fi" 2eV(t) k2E(k, t )  dk = ~ ( t ) .  

Hence, for an inertial-range Kolmogorov spectrum : 

E ( k )  = ckEikS, 
with ck = 1.4, (5.2) gives 

(5.3) 

This constant is weakly influenced by the spectrum shape in the largest scales: the 
value derived from the kinetic energy spectrum of figure 1 is 0.38. This analysis can 
easily be extended to the eddy diffusivity (Antonopoulos-Domis 1981). The scalar 
variance conservation yields 

Js '2e( t )  k2E,(k, t )  dk = r]( t ) ,  (5.5) 

where 7 is the temperature-variance dissipation rate. Assuming a scalar spectrum 
which obeys Corrsin-Oboukhov's law 

E,(k) = C,, ys-fkd, (5.6) 



182 

and a kinetic energy spectrum defined by (5.3), we get 
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The Corrsin-Oboukhov constant was found to be close to 0.9 in the large-eddy 
simulation previously described. Consequently, in all the calculations presented in 
this section, the eddy Prandtl number will be taken equal to 0.6. 

Neglecting the ut and K~ dependence on k in (3.1) and (3.2), transforming back to 
physical space, and writing u ( x )  = (u , (x ) ,  u, (x) ,  u 3 ( x ) )  and x = (xl, x2, x3), we get 

(5.8) 

(5.10) 

a(x) denotes the large-scale component of a(x ) ,  which is given by a convolution of 
a ( x )  with the filter function G ( x )  : 

2 sin (xxi/Ax) 
RXi  

, @ ( X i )  = (5.11) 

with AX = x/k,. (5.12) 

The subgrid-scale part of the fields is a' = a-6. Wij is the vorticity tensor, = 
aa,/axi-atiii,/ax,. P is a modified pressure determined with the aid of the continuity 
equation. When applying the filter directly to Navier-Stokes equations in physical 
space, with 

R ,  being the total subgrid-scale Reynolds stress tensor R,, = - (tii u; + u; a, + u; u;), 
the set of equations (5.8), (5.10) is recovered with P = p / ~ - t - $ ~ + @ ~ ~ .  The Leonard 
stress (Leonard 1974) is identically zero with the sharp filter. 

These physical-space large-eddy simulation equations were originally formulated 
by Smagorinsky (1963) and Lilly (1967) and various approaches have been used for 
determining vt (see Voke & Collins 1983 for a review). An extensively used model is 
the one proposed by Smagorinsky (1963) 

R$j-f&$jRkk = U t ( a @ t / a X j  +aaj /aX, ) ,  
--- 

u,(x,t) = (CAX)~S:, (5.13) 

with s = 25,s,,, (5.14) 

where S ,  is the local grid-scale strain-rate tensor 

s --(-+A). 1 aa, aa 
i5 - 2 ax, axi 

(5.15) 

However, in order to determine the adjustable constant C in (5.13), the spatially 
fluctuating quantity S has to be replaced by its volume average (8) (see e.g. Lilly 
1967 ; Leslie & Quarini 1979) and consequently v,(x, t )  by v Y ( t ) .  Thus, (5.2) can be 
used to express energy conservation. Furthermore, the energy dissipation can be 
written as (Lilly 1967) 

s ( t )  = (CAx)'(Bi). (5.16) 
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Using (5.2), (5.3), (5.13) and (5.16) gives 

(5.17) 

If the strain-rate ratio is assumed unity, evaluation of (5.17) indicates that C x 0.2. 
The spectral eddy viscosity without a cusp, given by (5.1), can be employed in 

physical space. However, the eddy viscosity scales on [E(k,,  t ) /k ,$ ,  which averages 
all the velocity fluctuations on the computational domain. It is well known that 
turbulence is highly intermittent, with spatially localized vortical structures 
surrounded by quasi-irrotational fluid. In a calculation carried out in physical space, 
there is no need for any eddy-dissipation in the regions where the flow is calm. On the 
other hand, it is essential to dissipate in the subgrid scales the local bursts of 
turbulence if they become too intense. We thus propose to take an eddy viscosity 
varying in physical space, in the form 

(5.18) 

where E,(k,) is a local kinetic energy spectrum at x. How can we determine such a 
spectrum ? As pointed out by Batchelor (1953) there is an obvious dualism between 
the Fourier coefficients and the velocity differences in physical space. We thus 
consider the local second-order velocity structure function 

F&,Ax,t) = ( I lu (x , t ) -u (x+r , t )  112)11rll-bz (5.19) 

(where ( . ) is an appropriate spatial average upon points x + r a distance Ax from x). 
It has been shown (Batchelor 1953) that, for isotropic turbulence, 

sin kr 
F2 ( r , t ) = 4 JOm E( k , t ) [ 1 - dk . (5.20) 

For a spectrum of the form (5.3) extending from 0 to CO, (5.20) yields (Orszag 1977) 

Fz(r, t )  = 4.82Ck(er)), (5.21) 

Assuming that k, lies in a Kolmogorov inertial range (E(k , )  satisfies (5.3)), it 
which was the original formulation of Kolmogorov's law (Kolmogorov 1941). 

follows from (5.21) that 

(5.22) 

Substituting into (5.18) yields 

v,(xJAx) = 0.066C$Ax[F2(x, Ax, t)]'.  (5.23) 

If one chooses to evaluate the structure functio: at  r > 42, one can check that vt K 

rF2(r);, the proportionality factor being 0.066Cip (r/Ax)-s. 
We now consider a large-eddy simulation of homogeneous isotropic turbulence 

carried out in physical space and we concentrate on the evaluation of Fz(r). We can 
calculate the grid-scale structure function 

F 2 W  = < ( a ( x + 4 - a ( x ) ) 2 )  (5.24) 

and we have F 2 ( r )  = F2(r) +Co(r, Ax) (5.25) 
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FIGURE 21. Velocity structure functions p2(r) (-) and F,(r) (---) given by (5.30), evaluated 
in the calculation of figure 1. The dotted line shows the asymptotic value F ; ( r )  given by (5.21). 
r is normalized by Az. 

where C, is the unknown contribution of the subgrid scales to the structure function. 
Its spectral expression is 

C,, = 4 Jk: E(k, t )  [ 1-- siirkr]dk. (5.26) 

We recall that k, is related to Ax by (5.12). Assuming an inertial range extending 
from k, to 00, (5.26) yields 

C,,(r, A X )  = F2&(r) ( ~ / A x ) - Q Z ( T / A X ) .  (5.27) 

F2&(r) is the asymptotic function given by (5.21) and H(C) has the following analytical 
expression : 

From Gradshteyn & Ryzhik (1965), one gets 

#-:sin # d# = li[e-Wi(-t)r( 2 -8, i@) -edZi(-!)f( -Q, -i@)], (5.29) 6 
where f is the gamma function. 

estimation of F,(r) : 
Replacing F,&(r) by F2(r) in (5.26), we finally obtain the following physical-space 

(5.30) 

which allows one to determine the total structure function from the filtered signal. 
Turning back to the large-eddy simulation of $3.1, figure 21 shows, a t  the end of 

the run, F2(r) (computed in spectral space with the integral in (5.20) extending from 
0 to kc) ,  F2(r) given by (5.30), and F2&(r). r is normalized by Ax. We can see that it is 
only for r + Ax that the corrected structure function F,(r) collapses on the asymptotic 
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FIQURE 22. Compensated spectra &kiE(k) in a large-eddy simulation (968 resolution points) with 
the physical-space eddy viscosity given by (5.32) (-). ( t  = 22/v, kt(0) ; k,(O) = 8 . )  It is compFred 
to the spectra obtained with spectral eddy viscosity given by v,(klk,, t )  = v:(k/k,)[E(k,,  t ) / k , ] s :  k- 
dependent v: (see (2.5)) (----); constant v: = 0.4 (......); -.- , Smagorinsky's model (see (5.13)) 
with C = 0.2. 

determination corresponding to a Kolmogorov cascade extending to infinitely small 
scales. We notice also that, in this practical case, the correction proposed by (5.30) 
seems to work quite well. 

If one considers inhomogeneous or highly intermittent flows, the former analysis 
can be valid if the subgrid scales and the smallest grid scales are locally homogeneous. 
One assumes that the large-scale inhomogeneities are directly taken into account by 
the simulation of the large scales themselves. In physical space, one can then 
estimate locally at each grid point (located at x) the filtered structure function p2(x, 
r ,  t )  by averaging over a sphere of radius r centred in x. In practical cases, one takes 
T = Ax. For a regular cubic mesh in physical space, the local structure function is 
thus determined at each point by averaging over the six closest surrounding points. 
The total structure function F2(x, Ax, t )  can then be deduced from F2(x, Ax, t )  through 
(5.30), which gives (for T = Ax):  

F2(x, AX, t )  = 2.53 x P2(x, AX, t ) .  (5.31) 

Finally, (5.23) and (5.31) allow the determination of the local eddy viscosity: 

ut(x, t )  = 0.105C$Ax[F2(x, Ax, t)];. (5.32) 

For C,  = 1.4, the multiplying factor x 0.063. This new model will be designated the 
structure-function model. 

We have used the formulation (5.32) in an homogeneous isotropic calculation (963 
collocation points) where the intermittent behaviour may render the use of the 
spatially varying eddy viscosity necessary. Pseudo-spectral methods are still used, 
but the dissipative term for the ith component of the velocity field (u+ v,(klk,)) k21ii 
is replaced in (3.1) by 

The compensated energy spectrum sfkgE(k) obtained with this physical-space 
subgrid-scale model at t = 22/v,k,(O) (k,(O) = 8) is shown in figure 22. It is com- 
pared to the spectra obtained with spectral eddy viscosity given by vt(klk, , t)  = 

l7{ k,J" ( u + ut(x))  F-l (k, Zi, + k, ti,)]}. (5.33) 
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FIGURE 23. Scalar spectra corresponding to the calculation of figure 22. 

v,+(k/k,)  [E(k,, t) /k,]f ,  first with v: dependency on k given by (2.5), secondly ignoring 
k-dependency and taking v: = 0.4. The spectrum given by a simulation using 
spatially fluctuating Smagorinsky's eddy viscosity (see (5.13)) is also plotted. Except 
for the spectral region near the cutoff, where the dissipation is underestimated, the 
spectrum, as given by the physical-space structure function model exhibits a long 
spectral range of slope x -8 (with a Kolmogorov constant C, x 1.4). This is an 
improvement compared to the calculations with spectral eddy viscosity (which yield 
an inertial spectrum closer to P). In the same way, the Smagorinsky model gives 
excessively steep decay of the energy spectrum at large wavenumber, indicating that 
it dissipates too much energy from the resolved scales. Similar results were noticed 
in the large-eddy simulation of turbulent channel flows performed by Piomelli, Moin 
& Ferziger (1988). The passive-scalar spectrum obtained with the structure function 
model displays a well-defined xk-' spectral range up to k x k, (figure 23). This 
spectrum is very close to the one given by the Smagorinsky model, except a t  high 
wavenumbers. The differences observed at all wavenumbers with the spectra 
resulting from simulations with spectral eddy viscosity could be because spatially 
varying eddy diffusivities take better account of scalar strong intermittency, 
although we have checked that the various p.d.f.s do not depend very much on the 
subgrid-scale model used. At large scales, the kinetic energy spectrum obtained with 
the structure function model is in good agreement with that of direct numerical 
simulation with 12P collocation points presented in $3.2 (figure 24a). However, the 
best agreement for the large-scale scalar variance is achieved when numerical 
simulations are performed with a molecular Prandtl number equal to the turbulent 
one: Pr = 0.6 (see figure 24b). The large scales of the flow do not seem to distinguish 
between molecular and turbulent diffusion coefficients, at least in the early phase of 
the decay. 

5.1. Flow structures 
Vorticity structures in three-dimensional homogeneous isotropic turbulence have 
been extensively studied (see e.g. Siggia & Patterson 1978; Siggia 1981 ; Yamamoto 
& Hosokawa 1988; She, Jackson & Orszag 1990; Vincent & Meneguzzi 1991). 
Numerical results show that high-vorticity-amplitude regions are associated with 
tube-like objects. Several investigators have been studying strong vortical regions 
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Plate 1 

FIGURE 25. (a) Direct numerical simulation (1283 resolution points), (b) large-eddy simulation with the 
structure function subgrid-scale model (963 resolution points). The red surfaces bound the regions within 
which the vorticity modulus 101 = (u2)% is larger than a given percentage of the instantaneous maximum: 
42 % for (a) and 55 X for (b). The blue surfaces delimit regions where the pressure p verifies p 5 p 5 
0.42 pmin:pmin is the instantaneous pressure minimum @,., < 0). 
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FIGURE 26. Direct numerical simulation (1283 resolution points) corresponding to figure 25(a). The blue 
surfaces delimit regions where the pressure p verifies pmin 5 p 5 0.36 pmin, The green surfaces bound the 
regions within which the absolute value of the scalar fluctuations is larger than 41% of the instantaneous 
maximum. 
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FIQURE 24. (a) Comparison of the kinetic energy spectra obtained with the structure function 
model with 968 collocation points (-) and in a direct numerical simulation with 1283 points 
(. . . . .). In both cases, t = 21/w,k,(O) ; k,(O) = 8. ( b )  Corresponding scalar spectra. The molecular 
Prandtl number for the direct numerical simulation is equal to the eddy Prandtl number used in 
the large-eddy simulation : Pr = 0.6. 

using other criteria such as low pressure (e.g. Wray & Hunt 1990; Brachet 1990; 
Silveira-Net0 et al. 1991). We focus here on the comparison between the turbulent 
structures given by the direct numerical simulation of $3.2 shown in figure 25(a) 
(plate 1) and by the large-eddy simulation using the structure function model shown 
in figure 25(b) (plate 1). The red pink surfaces bound the regions within which the 
vorticity modulus 1w( = (w2)i  is larger than a given percentage of the instantaneous 
maximum: 42% for figure 25(a) and 55% for figure 25(b). The pressure can be 
determined through the Poisson equation except for an additive constant. The 
constant is chosen here such that the pressure volume average is zero: the low- 
pressure regions thus correspond to negative values, high pressure to positive ones. 
For figures 25(a) and 25(b), the blue surfaces delimit regions where the pressure 
p verifies pmin < p < 0.42pmin, where pmin is the instantaneous pressure minimum 
(pmin < 0). In  both cases, t th  of the computational domain is represented. In  the case 
of the direct numerical simulation (figure 25a), three-dimensional plots of the 
vorticity reveal elongated, ' worm-like ' structures. These structures correlate well 
with the low-pressure ones. As in Vincent & Meneguzzi (1991), the length of these 
objects is of the order of the integral scale, while their diameter corresponds to 
inertial-range scales. As already shown above in figures 5 (f) and 5 (g), our pressure 
p.d.f.s exhibit a very asymmetric shape, with a remarkable exponential fit in the low 
regions, when while the high-pressure one is very close to Gaussian. This constitutes 
another signature of strong vortical concentration. The corresponding skewness 
factor is x - 1 .O. Figure 25 ( b )  indicates that concentrated low-pressure structures 
are still present in large-scale simulations. They are elongated and correlated to some 
of the vorticity structures. However, the high-vorticity regions are very scattered 
due to the high vorticity level in the smallest resolved scales. Therefore, the low- 
pressure structures are better tracers of the coherent structures. 

We present in figure 26 (plate 2) (direct numerical simulation) the low-pressure 
(blue) and high-temperature fluctuations (green). It is striking that temperature is 
stretched in the ' braid ' region between the large billows. This is reminiscent of two- 
dimensional turbulence, and might confirm the enstrophy cascading- type cascade 
proposed above to explain the anomalous k-l temperature spectrum. 

Finally, we have plotted, for the simulation based on the structure-function model, 

7 F L M  239 
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FIGURE 27. Compensated pressure (-) and kinetic energy (----) spectra for the 
structure-function model based simulation corresponding to figure 22. 

the pressure spectrum compensated following Oboukhov’s (1949) and Batchelor’s 
(1951) quasi-normal predictions in a Kolmogorov kinetic energy cascade : 

Ep,(k)  = aC:Etk-f. (5.34) 

The constant a may be determined from Monin & Yaglom (1975) as 

(5.35) 

This constant was also given by Georges, Beuther & Arndt (1984). Figure 27 shows 
the compensated spectrum E-skbpp, which is compared with the corresponding 
kinetic energy spectrum compensated by Kolmogorov’s law. We notice that 
Batchelor’s law seems to be valid for k > 20 (the high-k cusp being certainly a 
contamination due to the inadequate representation of the velocity at kc), with a 
proportionality constant M 2.6 = 1.32CE in very good agreement with the theoretical 
prediction. The same spectral behaviour with a constant of the same order has been 
obtained for the pressure by Fung et al. (1992) using a method based on kinematic 
simulations. Therefore, the pressure-variance spectrum decreases a t  large wave- 
number more rapidly than the kinetic energy spectrum, so that the contribution of 
the small-scale motions is much less important for the pressure fluctuations than for 
the velocity fluctuations. This remark is even truer when comparing pressure and 
vorticity fluctuations. 

5.2. Further applications of the structure-function model 
In  addition to  the case of isotropic incompressible turbulence, the structure 
function model has also been respectively applied to the incompressible flow behind 
a backward-facing step (Silveira Net0 et al. 1991) and to a high-supersonic boundary 
layer (Mach 5 )  spatially developing above a flat plate (Normand & Lesieur 1991). 
These studies showed that the model presents the double advantage of allowing the 
vortex coherent structures of the flow to develop, and of predicting accurately the 
flow statistics. I n  the case of the step, intense longitudinal hairpin vortices are found 
and the computed flow statistics are in good agreement with those measured in the 
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laboratory experiments performed by Eaton & Johnston (1980). For the compressible 
boundary layer at Mach 5, A-shaped vortices staggered in the spanwise direction 
form, in the case of forced transition. The structure resembles the staggered mode 
proposed by Herbert (1988) in the incompressible boundary layer, for the natural 
transition case. This illustrates the intense three-dimensionalizing effect of 
compressibility. Notice also that no direct numerical simulation is possible at high 
Mach number, owing to the high critical Reynolds number. Therefore, the LES is the 
only possible approach for deterministic simulation in this case. 

6. Conclusion and discussion 
In the spectral large-eddy and direct numerical simulations of decaying turbulence 

described here, a convected passive scalar displays several anomalous characteristics : 
a k-l spectrum in the large scales ; Ink eddy diffusivity ; large-scale intermittency 
with exponential probability density functions ; decay laws much stronger than the 
ones predicted by statistical theories of turbulence or observed in some grid- 
turbulence experiments. 

The coupling between temperature and velocity fields due to the presence of stable 
stratification greatly modifies the temperature behaviour. The average decay rate for 
the available potential energy is now comparable to the ‘turbulent ’ velocity 
component decay rate. The former no longer displays the anomalous spectral 
behaviour it had in the isotropic case and the eddy Prandtl number is xO.45 at all 
wavenumbers. The temperature fluctuation exhibits a Gaussian distribution. Large 
differences in the degree of intermittency between the passive and non-passive cases 
are confirmed by the oceanic measurements of Gargett (1985). Furthermore, the 
clear difference between temperature distribution histograms when the latter is 
passive and when buoyancy forces are present could indicate regimes of hard and soft 
turbulence similar to those observed in Rayleigh-BBnard convection by Castaing 
et al. (1989). The most striking feature of the temperature-fluctuation field is the 
strong skewness of its derivative in the direction of the mean temperature gradient. 
This has been observed in several laboratory experiments and seems to be 
attributable to the buoyancy term in the temperature equation. We have 
distinguished between pre-collapse and post-collapse phases during the decay of the 
stratified turbulence. In the former stage, the Froude number is large and the 
‘turbulent’ component of the velocity field is weakly affected by the buoyancy 
forces, and the eddy-viscosity coefficients are the same as in the isotropic case. The 
latter stage (small-Froude-number regime) is characterized by an inhibition of the 
spectral transfers towards small scales implying a weaker dissipation and a reduction 
in the estimated eddy coefficients. Differences between eddy-viscosity coefficients for 
the ‘vortex’ and the ‘wave’ components of the velocity field could suggest some 
improvements in the subgrid-scale modelling. Furthermore, angular dependency of 
the eddy coefficients versus wavenumbers has to be investigated. In the collapsed 
state, the vertical velocity longitudinal derivative skewness becomes very small. 

We have also proposed a new formulation of the eddy-viscosity coefficient in 
physical space derived directly from Chollet & Lesieur’s (1981) spectral formulation, 
where the kinetic energy spectrum is calculated with the aid of a local second-order 
velocity structure function. From the explicitly calculated large scales, we can only 
estimate a truncated structure function. We propose here a correction which allows 
us to determine the total structure function from the filtered signal. We have called 
the result the structure-function model. 

7-2 
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The subgrid-scale parameterization proposed here is valid as long as the subgrid 
scales and the smallest explicit scales are locally isotropic and homogeneous. This 
does not represent too big a constraint if the large-scale inhomogeneities are correctly 
described by the explicit calculation : spectral homogeneous and isotropic subgrid- 
scale modelling by Chollet & Lesieur (1981) has been applied by Comte et al. (1990) 
to the large-eddy simulation of free-shear layers. Their simulation showed the 
appearance of longitudinal vortices, and also velocity fluctuations levels in excellent 
agreement with those found in the laboratory experiments. 

Contrary to the spectral one, the physical-space eddy-viscosity of the structure 
function model can be estimated locally in space : this is important for intermittent 
flows where the use of spatially varying eddy viscosity may be necessary. Our present 
study shows that the structure function model gives good results in the case of 
homogeneous isotropic turbulence, where internal intermittency exists, as the 
numerical calculations indicate. By comparison with spectral models and with 
Smagorinsky’s model, the new one gives the best agreement with the k-1 Kolmogorov 
kinetic energy spectrum, with a Kolmogorov constant C,  x 1.4. Comparisons with 
high-resolution direct simulations show a good concordance a t  large scale. In  both 
cases, the pressure probability function exhibits a very asymmetric shape with a 
remarkable exponential fit in the low-pressure wing. This reveals the presence of 
localized low-pressure structures as confirmed on the three-dimensional pressure 
plots. On the other hand, the high-vorticity regions, as given by the large-eddy 
simulations, are very scattered and much less correlated to the low-pressure areas 
than in the case of direct simulations. This indicates that low-pressure regions are the 
best tracer of areas of turbulent activity when only the largest scales of the flow are 
simulated. Finally, we have checked that Batchelor’s k-f quasi-normal law for the 
pressure spectrum is valid within the Kolmogorov range, and have determined the 
universal constant of this pressure spectrum, found of the order of 1.32CE. 

As shown in other calculations, the structure function model can be applied 
successfully to separated flows behind a backward-facing step and high-supersonic 
boundary layer above a flat plate. The model is able to both allow for the 
development of the vortex coherent structures and to give an accurate prediction of 
the flow statistics. 
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